
Journal of Computational Physics 228 (2009) 3358–3367
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A velocity decomposition approach for moving interfaces in viscous fluids

J. Thomas Beale *, Anita T. Layton
Department of Mathematics, Duke University, Box 90320, Durham, NC 27708-0320, USA
a r t i c l e i n f o

Article history:
Received 3 September 2008
Received in revised form 16 January 2009
Accepted 21 January 2009
Available online 31 January 2009

MSC:
76D05
65N06
35R05
74F10

Keywords:
Navier–Stokes flow
Stokes flow
Boundary integral
Stiff equations
Fractional stepping
Immersed interface
Immersed boundary
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.01.023

* Corresponding author.
E-mail addresses: beale@math.duke.edu (J.T. Bea
URLs: http://math.duke.edu/faculty/beale (J.T. Be
a b s t r a c t

We present a second-order accurate method for computing the coupled motion of a viscous
fluid and an elastic material interface with zero thickness. The fluid flow is described by the
Navier–Stokes equations, with a singular force due to the stretching of the moving inter-
face. We decompose the velocity into a ‘‘Stokes” part and a ‘‘regular” part. The first part
is determined by the Stokes equations and the singular interfacial force. The Stokes solu-
tion is obtained using the immersed interface method, which gives second-order accurate
values by incorporating known jumps for the solution and its derivatives into a finite dif-
ference method. The regular part of the velocity is given by the Navier–Stokes equations
with a body force resulting from the Stokes part. The regular velocity is obtained using a
time-stepping method that combines the semi-Lagrangian method with the backward dif-
ference formula. Because the body force is continuous, jump conditions are not necessary.
For problems with stiff boundary forces, the decomposition approach can be combined
with fractional time-stepping, using a smaller time step to advance the interface quickly
by Stokes flow, with the velocity computed using boundary integrals. The small time steps
maintain numerical stability, while the overall solution is updated on a larger time step to
reduce computational cost.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

We consider the coupled motion of a viscous fluid and an immersed boundary in a two-dimensional computational
domain X. The fluid flow is described by the Navier–Stokes equations. The immersed boundary C is assumed to be a
membrane consisting of elastic material, so that, when it is distorted from its rest state by stretching or relaxing, it exerts
a restoring force on the fluid. We assume that C is a simple closed curve, separating X into two subdomains, Xþ (exterior)
and X� (interior), so that X ¼ Xþ [C [X�. (Generalization to multiple closed immersed boundaries is straightforward.) We
assume here that the fluid properties are the same in Xþ and X�. The interfacial force causes discontinuities in the fluid
pressure and velocity gradient at C. We design a numerical method for this prototype problem which is second-order
accurate in space and time. The distinctive feature of this approach is a decomposition of the velocity and pressure into
two parts, one part determined by the (steady) Stokes equations and the interfacial force on C, and a second, more regular
part which can be calculated on a regular grid without special treatment near the interface. The decomposition allows the
discontinuities in fluid variables to be accounted for accurately in a relatively simple manner. Furthermore, a smaller time
step can be used to calculate the force and advance the immersed boundary while a large time step is used for the overall
solution.
. All rights reserved.

le), alayton@math.duke.edu (A.T. Layton).
ale), http://math.duke.edu/faculty/alayton (A.T. Layton).

mailto:beale@math.duke.edu
mailto:alayton@math.duke.edu
http://math.duke.edu/faculty/beale
http://math.duke.edu/faculty/alayton
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

J.T. Beale, A.T. Layton / Journal of Computational Physics 228 (2009) 3358–3367 3359
The Navier–Stokes equations for the fluid motion are
@u
@t
þ u � ru ¼ �rpþ lr2uþ F; ð1Þ

r � u ¼ 0; ð2Þ
where u ¼ ðu;vÞ denotes the fluid velocity; p is the pressure; l is the fluid viscosity, assumed to be constant; and F ¼ ðF1; F2Þ
is the interfacial force, supported entirely along C. The fluid density is set to 1. Biperiodic boundary conditions are assumed.

The force F is the elastic tension force that arises from the stretching of C. The stretching is naturally expressed in terms of
a material coordinate a on C, chosen to be arclength in the rest state. At time t the material point with label a has current
position Xða; tÞ. We denote the arclength on C at the current time t by s and write the force F ¼ ðF1; F2Þ as
Fiðx; tÞ ¼
Z L

0
fiðs; tÞdðx� XðaðsÞ; tÞÞds i ¼ 1;2; ð3Þ
where fi is the force strength at point s and d is the two-dimensional delta function.
The tension force f, as derived from force balance arguments, is given by
fðs; tÞ ¼ @

@s
ðTðs; tÞsðs; tÞÞ; ð4Þ
where we assume the tension Tðs; tÞ is given by
Tðs; tÞ ¼ T0
@X
@a

����
����� 1

� �
; ð5Þ
when the material is stretched. The tension coefficient T0 depends on the elastic properties of the interface and is assumed to
be a constant in this model. The unit tangent vector sðs; tÞ to C is
sðs; tÞ ¼ @X
@s
¼ @X=@a
j@X=@aj : ð6Þ
Thus the force density can be computed directly from the location Xða; tÞ of the boundary C. Note that in the relaxed state
j@X=@aj ¼ 1, and the tension vanishes.

Owing to the presence of a singular force F, the solution of (1) and (2) is not smooth across C. Its effect can be expressed in
terms of jump conditions in p and u. For any quantity q with jump discontinuity at the boundary, the jump is
½qðX; tÞ� ¼ lim
�!0þ

qðXþ �n; tÞ � lim
�!0þ

qðX� �n; tÞ; ð7Þ
where n denotes the vector normal to C.
The jump conditions for pressure (see [16,19,25]) are
½p� ¼ f � n; @p
@n

� �
¼ @

@s
ðf � sÞ: ð8Þ
The velocity u � ðu;vÞ is continuous across C; the boundary moves with the viscous fluid. However, the normal derivatives
of the velocity components have jump discontinuities:
½u� ¼ 0; l @u
@n

� �
¼ �ðf � sÞs: ð9Þ
Unless special care is taken, these discontinuities tend to introduce substantial inaccuracy into the computed solution ob-
tained by means of a standard finite difference method.

The immersed boundary method of Peskin et al. [25,29,24] was designed for this prototype problem and its generaliza-
tions for applications in biomechanics; see the review [24] and references therein. The interface is represented by markers as
above, and a carefully designed smooth version of a delta function is used to impart the force due to each marker point to the
grid points for the fluid. (Note that our notation above is slightly different from Peskin’s.) This method can be used for a wide
variety of problems, more realistic than that considered here. For an interface of zero thickness, the immersed boundary
method seems to be limited to first-order accuracy. However, second-order versions have been designed for the case with
a layer of positive thickness rather than an interface ([10,22]). Much work has been done related to the accuracy of the meth-
od with interfaces, as well as efforts to deal with stiffness, including [25,29,21,5,9,12,23].

One approach for achieving better accuracy is the immersed interface method [16,18] (or similarly, Mayo’s method [20]),
which first expresses the jumps in the solution and its derivatives in terms of the boundary force and its derivatives, and then
incorporates these jumps into a finite difference scheme as correction terms [16,19,32]. This method was first applied to the
Stokes equations [16], the simplified model at zero Reynolds number in which acceleration and advection are neglected. The
Stokes equations, (11) and (12) below, form an elliptic system at each time. The method can also be applied to the full Na-
vier–Stokes equations (1) and (2). This was first done in [19,15]. In principle this method can be quite accurate, but it be-
comes rather involved because of the large number of cases and corrections needed. Thorough development of this

3360 J.T. Beale, A.T. Layton / Journal of Computational Physics 228 (2009) 3358–3367
approach with elastic boundaries has been made in [14,32], with extensive applications to flow past fixed boundaries, and in
[27] to moving boundaries with jump in viscosity. Apparently in [32] second-order accuracy was obtained in space but not in
time; in [27] near second-order accuracy was verified for a test problem with a deforming elastic interface.

The motion of an interface in Stokes flow is easier to represent accurately than for the case of Navier–Stokes. If we use the
immersed interface method, the necessary correction terms are significantly simpler in the Stokes case [16]. Also, the solu-
tion of the Stokes equations can be expressed in boundary integrals [26]. Based on these observations, we propose an alter-
native – a method of velocity decomposition – for computing the solution of problem (1)–(5).

The method of velocity decomposition takes advantage of the fact that the jump conditions in the fluid variables for the
problem with Navier–Stokes flow are the same as those for Stokes flow. To compute the solution of (1)–(5), we express the
fluid velocity and pressure as the sum of a Stokes part and a regular part, denoted by the subscripts ‘s’ and ‘r,’ respectively:
u ¼ us þ ur; p ¼ ps þ pr: ð10Þ
The Stokes part of the solution is determined by the Stokes equations, including the boundary force:
rps ¼ lr2us þ F; ð11Þ
r � us ¼ 0: ð12Þ
The jump conditions for us; ps are the same as those for u; p in (8) and (9). This follows from the fact that u is continuous at C,
and therefore its material, or total, derivative is continuous as well. Taking the difference of (1) and (11), one obtains the
equation for the regular part of the solution
@ur

@t
þ u � rur ¼ �rpr þ lr2ur þ Fb; ð13Þ

r � ur ¼ 0; ð14Þ
where Fb is a body force given by the material derivative of the Stokes velocity:
Fb ¼ �
@us

@t
� u � rus: ð15Þ
Notice that the transport of both ur on the left side of (13) and us in Fb are with the full velocity u. Unlike F, the body force Fb

is not singularly supported on C. It is a continuous function on X, since us, and thus its material derivative, are continuous
across C. However, the gradient of Fb has a jump discontinuity across C. Because the jump conditions for us; ps are the same
as those for u; p, the corresponding jumps for ur ; pr are zero. This fact and the continuity of Fb suggest that we can solve for
ur ; pr on a regular grid accurately without jump terms at the interface.

We solve the Stokes equations (11) and (12) using the immersed interface method as in [16]. For the regular part, it ap-
pears that if we were to solve (13) and (14) by means of the immersed interface method, we should not have to impose cor-
rections for jumps; see [19]. However, the computed solution will still be sensitive to the choice of numerical method. We
wish to avoid discretizing the advection terms sinceru is discontinuous at C. Moreover, the mild nonsmoothness of ur at C
might lead to inaccuracy unless we use a time-stepping method which smooths the high wavenumbers. For these reasons we
solve (13) and (14) with the semi-Lagrangian or Courant, Isaacson, Rees (CIR) method (e.g., [31,4]) and discretize in time with
a backward difference formula. Values of the unknowns at the current time are found at regular grid points using Lagrangian
treatment of transport terms. That is, the material derivative is replaced by a difference quotient formed with earlier values
found at a location reached by traveling backward in time; the earlier value at that location must be interpolated in space
from grid values. The complete method is relatively simple but maintains full second-order accuracy.

If the boundary force is sufficiently stiff (i.e., the tension coefficient is sufficiently large), an explicit method requires smal-
ler time steps to be stable. The decomposition approach provides the flexibility to use small time steps to advance the
boundary while using a larger step for the complete motion. The small time step is used for the Stokes part only, since
the interfacial force is associated with this part. Moreover, the velocity needs be computed on the small time step only at
boundary locations. We compute the free-space Stokes velocity from the boundary integral representation on the small steps
with corrections from the large steps.

In Section 2, we describe the numerical method in more detail. Section 3 presents examples which demonstrate the sec-
ond-order convergence in space-time and illustrate the effectiveness of the fractional time steps. Some issues related to the
accuracy and possible extensions of this approach are discussed in Section 4.

2. Numerical method

With time step Dt > 0 chosen, let tn � nDt be the nth time level, for n ¼ 0;1; For any time-dependent quantity q, we
write qn for qðtnÞ. We use rectangular grids with grid interval hx and hy along the x- and y-axis. For notational simplicity, we
assume hx ¼ hy � h. We compute values of fluid quantities at grid points ðih; jhÞwhere i; j ¼ 0;1;2; . . . ;N with periodicity im-
posed in x and y. The position of the immersed boundary at time t is represented by a set of boundary markers
XkðtÞ � ðXkðtÞ;YkðtÞÞ, for k ¼ 0;1;2; . . . ;Nk, where X0ðtÞ ¼ XNk

ðtÞ, since the boundary is assumed to be a simple closed curve.
The kth boundary marker approximates Xðak; tÞ, where ak ¼ kL0=Nk, and L0 is the length of C in the unstretched state; that is,

J.T. Beale, A.T. Layton / Journal of Computational Physics 228 (2009) 3358–3367 3361
the boundary markers are chosen so that they are equally spaced in the unstretched or relaxed state. We discuss the partial
steps for updating the velocity and boundary markers in succession.

2.1. Computing the stokes solution

In the method of velocity decomposition, we first compute the Stokes pressure ps and velocity us � ðus;vsÞ by solving (11)
and (12). We follow the approach of LeVeque and Li [16] and reduce (11) and (12) to a sequence of Poisson problems, one for
each unknown ps;us;v s; the resulting Poisson problems are solved together with the jump conditions for the unknowns. We
incorporate the jumps in the solution and its derivatives using Mayo’s technique [20], in which the jumps are found along
the coordinate lines, an approach slightly different from that in [16]. Nonetheless, we use the term immersed interface meth-
od. An analysis of the accuracy of the method, with application to the Stokes equations as in [16], can be found in [2].

As noted before the Stokes pressure ps and velocity us have the same jump conditions as (8) and (9) for p and u. To com-
pute the fluid motion given by (11) and (12), as in [16], we first solve
r2ps ¼ 0 in Xþ [X� ð16Þ
for ps along with the jump conditions (8). Once ps is computed, us ¼ ðus; vsÞ can be obtained by solving (11), with F set to 0 in
Xþ [X�, together with (9). Standard second-order finite difference operators are used, and the solutions are computed with
the FFT using the periodicity condition.

2.2. Computing the regular solution

Once us is known, the body force Fb, which is given by the material, or total, derivative of us, can be found at the current
time. As previously noted, since both u and us are continuous across the interface, their material derivatives are also contin-
uous, and we seek to take advantage of this fact. We advance ur on a square grid, with semi-Lagrangian treatment of the
material derivatives. Such an approach has long been used in fluid problems (e.g., see [8], Chapter VI) and is now common
in meteorology [6]; a recent use in a setting similar to ours is in [4]. A recent thorough treatment is in [31].

In the semi-Lagrangian discretization, the advection terms are incorporated into material derivatives, and (13) becomes
dur

dt
¼ �rpr þ lr2ur þ Fb; ð17Þ
where
Fb ¼ �
dus

dt
: ð18Þ
To discretize (17) along trajectories, we use a second-order backward difference formula (BDF) as in [8,31,4], since it avoids
complications inherent in methods such as Crank–Nicolson with backward characteristics (see [31]). The resulting discret-
ized equation is
3unþ1
r � 4~un

r þ ~un�1
r

2Dt
þrpn

r ¼ lr2unþ1
r þ Fnþ1

b ; ð19Þ
where ~un
r and ~un�1

r are the fluid velocities at upstream positions xn and xn�1, respectively, i.e.,
~un
r ¼ urðxn; tnÞ; ð20Þ

~un�1
r ¼ urðxn�1; tn�1Þ: ð21Þ
The material derivative of us in Fb on the right side of (19) is discretized in the same way as for ur on the left. For the first
step, i.e., for n ¼ 0, backward Euler is used to discretize (17).

To evaluate ~un
r and ~un�1

r , we first estimate xn and xn�1, given by the initial value problem
dxðtÞ
dt
¼ uðxðtÞ; tÞ; xðtnþ1Þ ¼ x0; ð22Þ
where the initial point x0 is a regular mesh point ðih; jhÞ. We estimate the upstream particle positions xn and xn�1 by inte-
grating (22) backward in time over the interval ½tnþ1; tn� and ½tnþ1; tn�1�, respectively, using the midpoint method, according to
the formulas
x� ¼ x0 �
Dt
2

u x0 �
Dt
2

unþ1
2; tnþ1

2

� �
; xn ¼ x0 � Dt u x�; tnþ1

2

� �
; ð23Þ

x� ¼ x0 � Dt uðx0 � Dt un; tnÞ; xn�1 ¼ x0 � 2Dt uðx�; tnÞ ð24Þ
with interpolation as explained below.
The fluid velocities u and ur are known at time levels tn and tn�1, but only at grid points, which likely do not coincide with

the upstream positions xn and xn�1 that are needed in (19), (23), and (24). Thus, cubic Lagrange interpolation in the spatial

3362 J.T. Beale, A.T. Layton / Journal of Computational Physics 228 (2009) 3358–3367
variable is used to estimate u and ur at other locations. Cubic Lagrange interpolation, a fourth-order method, is used in con-
junction with a second-order temporal discretization because of the expected order reduction in a semi-Lagrangian discret-
ization when the spatial and temporal meshes are scaled alike, i.e., when Dt ¼ OðhÞ (see [31,7]), and because the damping
and phase-shift effects introduced by cubic interpolation are usually less severe than from linear or quadratic interpolation.

In (24), un is evaluated at x0 while at other locations uð�; tnÞ is found by cubic Lagrange interpolation. In (23), unþ1
2, the

value at location x0, is approximated using the time extrapolation 3
2 un � 1

2 un�1, and for u �; tnþ1
2

� �
at other locations, the same

extrapolation is used in time, as well as spatial interpolation. Once xn and xn�1 are known, they are used to find ~un
r and ~un�1

r in
(19), and the forcing term Fnþ1

b is treated analogously.
We use the second-order projection method to compute the solution of (19) and (14). We first solve for the intermediate

velocity u�r from
3u�r � 4~un
r þ ~un�1

r

2Dt
þrpn

r ¼ lr2u�r þ Fnþ1
b : ð25Þ
Specifically, fast Fourier transforms are used to compute the solution of
3
2Dt
� lr2

� �
u�r ¼ Fnþ1

b � 1
2Dt

�4~un
r þ ~un�1

r

	

�rpn

r ð26Þ
again using standard second-order finite difference operators. Next unþ1
r is found by approximately projecting u�r onto the

subspace of divergence-free vector fields,
unþ1
r ¼ Pu�r ; Pv ¼ v �rðr2Þ�1r � v: ð27Þ
This is achieved by defining / as
unþ1
r ¼ u�r � ðDtÞr/; ð28Þ
and solving the Poisson equation
ðDtÞr2/ ¼ r � u�r ð29Þ
using difference operators in the Fourier transform. Then, in grid space, the pressure is updated according to
rpnþ1
r ¼ rpn

r þ
3
2
r/� lDtr3/ ð30Þ
so that finally we obtain the solution of
3unþ1
r � 4~un

r þ ~un�1
r

2Dt
þrpnþ1

r ¼ lr2unþ1
r þ Fnþ1

b : ð31Þ
Note that P is not an exact projection becauser2 –r � rwith the usual second-order difference operators. See, e.g., [10] for
further discussion of the approximate projection method.

2.3. Computing boundary motion

Besides simplifying the treatment of jump conditions, the method of velocity decomposition also offers an efficient ap-
proach for advancing the boundary when the boundary force is stiff. When an explicit time-stepping method is used to ad-
vance a stiff boundary, the time step must be sufficiently small to maintain numerical stability, leading to high
computational costs. This difficulty may be overcome by means of an implicit or semi-implicit scheme [21,29,16,23,12].
By computing boundary forces implicitly, i.e., from the boundary configuration at the end of the time step, one may relax
the time step restriction imposed by stiffness. However, this approach results in a non-local and nonlinear problem for
the boundary forces, which involves the fluid–mediated interaction of each boundary point with every other boundary point
and requires the solution of a dense system of equations. Motivated by these numerical challenges, we propose a fractional
time-stepping algorithm – the boundary is advanced using a smaller time step to maintain numerical stability, and the over-
all solution is updated using a larger time step to reduce computational cost.

Suppose we take Nm (small) forcing substeps Dtm per (large) advection time step Dt; thus, Dt ¼ NmDtm. Let tm and tn de-
note the forcing and advection time-levels, respectively, where tm ¼ tn þmDtm ¼ tn þmDt=Nm, for m ¼ 1;2; . . . ;Nm. Because
the proposed method treats the boundary force explicitly, the size of Dtm may be severely restricted to maintain numerical
stability. Thus, for the method to be efficient, the computational cost in advancing the boundary by one Dtm must be suffi-
ciently low. To this end, we make the following observations:

(1) The decomposition places the stiff boundary force in the Stokes equations (11) and (12). Thus, while the Stokes veloc-
ity must be advanced using a sufficiently small time step, the regular solution may be computed using a larger time
step without significant loss of accuracy.

J.T. Beale, A.T. Layton / Journal of Computational Physics 228 (2009) 3358–3367 3363
(2) To update the boundary forces, one must update the boundary position; to update the boundary position under Stokes
flow, one needs to update the fluid velocity at points on the boundary – but nowhere else.

(3) The free-space Stokes velocity can be computed using a boundary integral, and this is routine for boundary locations.

With the above observations, we propose a fractional time-stepping method that updates only the Stokes velocity at the
boundary during each forcing step Dtm using boundary integrals; the full velocity is then computed less frequently in the
entire domain at each advection time step Dt. Let uC denote the boundary velocity, i.e., uC � uðXðtÞ; tÞ. It is found on the
small time steps in a manner explained below. To advance the boundary configuration from tm to tmþ1, we update the bound-
ary markers as follows:
Xmþ1 ¼ Xm þ Dtm
3
2

um
C �

1
2

um�1
C

� �
: ð32Þ
When m ¼ 0 and n > 0;um�1
C is set to uNm�1

C from the previous time interval ½tn�1; tn�. When m ¼ 0 and n ¼ 0, forward Euler is
used to advance X. For the special case Nm ¼ 1, the boundary markers are advanced using velocity values at the previous two
advection time-levels:
Xnþ1 ¼ Xn þ Dt
3
2

un
C �

1
2

un�1
C

� �
: ð33Þ
As in the case of the overall solution u, the boundary velocity uC can be expressed as the sum of a Stokes part and a regular
part:
um
C ¼ um

sC þ um
rC: ð34Þ
The Stokes velocity um
sC, which satisfies (11) and (12), containing the stiff boundary force, is updated using fm at every tm, but

only at the boundary C. To update um
sC, we use the representation of the Stokes velocity as a layer potential:
um
sC ¼

Z
C

VðXm � yÞfmðyÞdsðyÞ; ð35Þ
where the kernel V depends on the space dimension and the boundary conditions. For free-space boundary conditions in two
dimensions,
VFSðxÞ ¼
1

4pl

� log jxj þ x2
1

jxj2
x1x2

jxj2

x1x2

jxj2
� log jxj þ x2

2

jxj2

2
64

3
75; ð36Þ
where x � ðx1; x2Þ. (See [26].)
In this study, biperiodic boundary conditions are used. Thus, the free-space kernel VFSðxÞ given in (36) is, in principle, not

applicable; instead, we need the analogous function for biperiodic boundary conditions. However, because the biperiodic
kernel VPðxÞ cannot be written explicitly, we compute the free-space velocity um

sC;FS using VðxÞ ¼ VFSðxÞ in (36), and then cor-
rect for the discrepancy in boundary conditions. That is, we compute a correction term um

sC;BC, which is defined as
um
sC;BC ¼

Z
C

VPðXm � yÞfmðyÞdsðyÞ �
Z

C
VFSðXm � yÞfmðyÞdsðyÞ: ð37Þ
Now since VPðxÞ is not known, um
sC;BC cannot be computed directly using (37). Instead, the Stokes problem (11) and (12) is

solved twice for each large time step on the grid points of X by means of the immersed interface method, once with the bipe-
riodic boundary conditions, and separately with the free space boundary conditions. (In the free-space case we need values
for the velocity and pressure on the boundary of the computational domain X. We find these from their integral represen-
tations ([26,2]) and then use the immersed interface method as before but with Dirichlet boundary conditions.) The differ-
ence between the two sets of velocity values yields usBC on grid points.

Assuming that C is sufficiently distant from the computational domain boundary @X, the boundary condition correction
um

sBC is likely to be smoothly varying, compared to the boundary velocity um
sC. Thus, to reduce computational cost, usBC is up-

dated only at the advection time-level tn. At each Dtm;um
sBC is first obtained on grid points by means of temporal extrapola-

tions using values at tn and tn�1. Then um
sC;BC is obtained from um

sBC values at grid points by means of spatial interpolations.
Because the jump conditions of usFS and usP are the same, those jumps cancel when one takes the difference of the two solu-
tions to generate usBC. Thus, no correction terms are needed when interpolating um

sC;BC. The Stokes boundary velocity is then
given by
um
sC ¼ um

sC;FS þ um
sC;BC: ð38Þ
The regular velocity ur at the boundary is handled during the small time steps in a manner similar to usBC, since its evolution
Eq. (13) does not contain the stiff force F. That is, it is computed only at the advection time-level tn. For each Dtm;um

rC is com-
puted by first extrapolating to time tm from grid-point values of ur at tn and tn�1, and then spatially interpolating those grid-
point values to the boundary markers. The final boundary velocity is given by (34).

3364 J.T. Beale, A.T. Layton / Journal of Computational Physics 228 (2009) 3358–3367
2.4. The algorithm

At tn, approximations for un
s ;u

n
r ;u

n
sBC;rpn

r ;X
n, and fn are known. The algorithm for advancing the solution from tn to tnþ1 is

summarized below:

(1) For m ¼ 0;1; . . . ;Nm � 1,

(a) Compute free-space boundary velocity um

sC;FS along C using the integral formula (35).
(b) Update boundary conditions correction um

sC;BC by extrapolating in time and interpolating in space, from grid-
point values of un�1

sBC and un
sBC.

(c) Update regular boundary velocity um
rC by extrapolating in time and interpolating in space, from grid-point values

of un�1
r and un

r .
(d) Compute boundary velocity using (34) and (38).
(e) Update the boundary markers Xmþ1 using (32) or (33).
(f) Update the boundary forces fmþ1.
(2) Set Xnþ1 ¼ XNm and fnþ1 ¼ fNm . Express jumps in solution and derivatives across C in terms of boundary force fnþ1.
(3) By means of the immersed interface method, compute solution of Stokes problem (11) and (12) over X, assuming free

space boundary conditions.
(4) By means of the immersed interface method, compute solution of Stokes problem (11) and (12) over X, assuming bipe-

riodic boundary conditions, following the procedures described in Section 2.1. This yields unþ1
s and pnþ1

s .
(5) Compute the difference unþ1

sBC between the two velocities obtained in steps (3) and (4).
(6) Compute the regular solution unþ1

r and rpnþ1
r as described in Section 2.2. The overall velocity is given by

unþ1 ¼ unþ1
s þ unþ1

r .

In the special case Nm ¼ 1, without smaller time steps, the algorithm could be simplified; (1)(a)–(d) could be replaced by
interpolating the velocity from grid values of un to the boundary locations, with care taken to incorporate jumps in the veloc-
ity derivatives into the interpolation formulae.

3. Numerical results

In this section, two numerical examples are used to demonstrate the accuracy and efficiency of the proposed method. All
calculations reported below were performed using Fortran programs, which were executed in double precision.

3.1. Example 1

We first simulate the motion of a relaxing or oscillating ellipse. This example is frequently used in testing numerical
methods for immersed boundary problems [29,16,15,23]. The initial boundary is an ellipse with major and minor axes set
to a ¼ 0:7 and b ¼ 0:5, respectively. The unstretched boundary was taken to be a circle with radius r0 ¼ 0:5. The tension coef-
ficient T0 was set to 0.1. We tested the method for a fluid that is relatively viscous, with the diffusion coefficient l set to 0.1,
and then for another fluid that is significantly less viscous with l ¼ 0:01. In both cases, the computational domain was
½�1:2;1:2� � ½�1:2;1:2�. The fluid was initialized to be at rest, i.e., u ¼ 0 and p ¼ 0 at t ¼ 0.

After a sufficiently long simulation time, the interface converges to a circle with radius re ¼
ffiffiffiffiffiffi
ab
p

� 0:6124, which is larger
than the unstretched boundary but which has the same area as the initial ellipse, owing to the incompressibility of the en-
closed fluid. At steady state, the fluid velocity vanishes everywhere; p attains constant values inside and outside the bound-
ary, with a jump ½p� < 0, because the boundary is initialized to a stretched state and because the limiting fluid velocity is zero.

The model Eqs. (1)–(5) were integrated using the method of velocity decomposition to nondimensional time t ¼ 10. At
the final time, in both cases, the boundary approaches its steady state, but in the second case it oscillates at earlier times.
Because the boundary forces in this example are not particularly stiff, the fractional time-stepping approach was not used,
i.e., we set Nm ¼ 1 and Dtm ¼ Dt. Fig. 1 shows the Stokes velocity (us and v s), regular velocity (ur and v r), and the overall fluid
velocity (u and v), at t ¼ 1:2 along x ¼ 0:3, for l ¼ 0:1 (panel A) and for l ¼ 0:01 (panel B). In both cases, the jump discon-
tinuities in the normal derivatives of us and u were captured sharply by the method. In contrast, the normal derivative of ur is
continuous across C. In the more viscous case ðl ¼ 0:1Þ, the magnitude of the Stokes velocity us is substantially larger than
ur . In contrast, when l ¼ 0:01, both us and ur are significantly larger in magnitude than u, with opposite signs. We observe
this relationship to hold at early times and less so at later times. Since the initial velocity is zero, ur ¼ �us exactly at time
zero. We expect the Stokes velocity us to have less relevance to the Navier–Stokes velocity u as the viscosity becomes smaller
(i.e., the Reynolds number is larger).

Table 1 shows velocity accuracy and area conservation results for N ¼ 80, 160, 320, and 640. The number of boundary
markers scales with N; specifically, we set Nk ¼ N=2.

The time step Dt was set to h. The errors in velocity at time t ¼ 1:2 were obtained at the grid points in the computational
domain and at boundary markers on the boundary C, in L2 norm and L1 norm, using the reference solution computed on the

A

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

y

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

u

u

u
r

u
s

u

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

y

-0.012

-0.008

-0.004

0

0.004

0.008

0.012

v v

v
rv

s

v

B

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

y

-0.2

-0.1

0

0.1

0.2

u u

u
r

u
s

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

y

-0.1

-0.05

0

0.05

0.1

v
v

v
r

v
s

v

Fig. 1. The fluid velocity at x ¼ 0:3 and t ¼ 1:2. u;v , full velocity; us; v s , Stokes part; ur ;v r , regular part. u;v ; us , and v s have a discontinuous normal
derivative across the boundary, whereas ur and v r do not. A, l ¼ 0:1; B, l ¼ 0:01.

J.T. Beale, A.T. Layton / Journal of Computational Physics 228 (2009) 3358–3367 3365
finest grid, with N ¼ 1280. These results exhibit approximately second-order accuracy in space-time. The value of the area A
enclosed by C, computed at the approximate steady state at t ¼ 10, is compared with the exact value A ¼ 0:7853981635,
which is known owing to incompressibility. Results for both l ¼ 0:1 and for l ¼ 0:01 exhibit second-order convergence
at sufficiently large N values.

3.2. Example 2

In the second test, we simulate the motion of a relaxing elastic boundary that is initialized to be the shape of a flower,
given in polar coordinates by r ¼ 0:8þ 0:3 sin 8h. The relaxed boundary is the circle with radius r0 ¼ 0:3.

The diffusion coefficient l was set to 0.1 and the tension coefficient to T0 ¼ 10. The computational domain was
½�1:5;1:5� � ½�1:5;1:5�. The fluid was initialized to be at rest.

The larger curvature in the initial boundary configuration, compared to the first example, together with a larger tension
coefficient T0, renders this problem significantly stiffer. Thus, we use this example to assess the improvement in efficiency
Table 1
Results for Example 1. Relative errors in enclosed area A and velocity u at grid points and on the interface C. The relative errors in A were computed using the
exact value; relative errors in u were computed using N ¼ 1280 as the reference solution. Results show approximate second-order space-time convergence.

N Area L2 (grid) L1 (grid) L2 ðCÞ L1 ðCÞ

l ¼ 0:1
80 5.291E–4 8.319E–4 1.036E–3 1.032E–3 1.176E–3
160 1.773E–4 3.026E–4 3.599E–4 2.366E–4 4.180E–4
320 5.299E–5 8.007E–5 1.160E–4 6.969E–5 1.237E–4
640 1.286E–5 1.300E–5 2.561E–5 1.462E–5 2.425E–5

l ¼ 0:01
80 2.057E–3 3.734E–3 6.850E–3 1.995E–3 4.903E–3
160 6.903E–4 1.311E–3 2.822E–3 6.395E–4 1.560E–3
320 1.662E–4 3.156E–4 6.600E–4 1.674E–4 4.123E–4
640 4.053E–5 8.659E–5 1.548E–4 6.081E–5 1.025E–4

Table 2
Results for Example 2. Relative difference in velocity u, obtained using fractional time-stepping with Dt ¼ h and obtained using no fractional time-stepping but
with a small time step of Dt ¼ h=10.

t 1.0 2.0 3.0

L2 3.102E–4 5.953E–4 8.527E–4

3366 J.T. Beale, A.T. Layton / Journal of Computational Physics 228 (2009) 3358–3367
that may be introduced by the fractional time-stepping approach described in Section 2.3. Before reviewing the numerical
results, we first estimate the computational costs associated with the following procedures: (a) computing the boundary mo-
tion (i.e., step 1 in the algorithm presented in Section 2.4), and (b) computing the solutions over the entire domain (i.e., steps
2–5 in the algorithm). For (a), the most computationally expensive procedure in updating the boundary configuration is in
computing the boundary velocity um

sC;FS using a boundary integral; those computations take OðN2Þ time. Thus, (a) has a com-
putational complexity of OðN2Þ. For the overall solution in (b), the largest computational cost is associated with the FFT or
fast cosine transforms, used in solving the Poisson and Laplace problems in steps 3, 4, and 6. Those computations require
OðN2 log NÞ time. Even though the log N factor grows slowly, for sufficiently large N, the computations in (b) will dominate.
Thus, given a sufficiently stiff boundary, which requires the forcing step Dtm to be prohibitively small to maintain numerical
stability, we expect that the fractional time-stepping approach to lower the overall computational costs by allowing many
ðNmÞ relatively quick forcing steps, per advection step, which is relatively expensive to compute. This reduction in frequency
at which the overall solution is computed, and thus in computational cost, will translate to an improvement in efficiency,
provided that taking larger advection steps does not significantly reduce accuracy. A rapid summation method could be used
for the boundary integrals, reducing the cost of one forcing step to roughly OðNÞ, and thus further improving the efficiency.

In the numerical tests, we simulated the fluid and boundary motions using two implementations of the method of decom-
position, and compare the time step restriction. In the first implementation, we set Nm ¼ 1, i.e., no fractional time-stepping is
used. In the second implementation, we set Nm ¼ 10. A spatial grid of N ¼ 320 was used. With these parameters, and with
Dt ¼ h, the second implementation was stable whereas the first was not. (A time integration is considered unstable when the
predicted boundary configuration sufficiently deviates from its expected course of approaching a circle. In practice, when an
integration becomes unstable, model variables frequently become unrealistically large or undefined.) The first implementa-
tion attained numerical stability when Dt was reduced to h=10. These results suggest that, for a stiff problem, the fractional
time-stepping approach can reduce computational cost by reducing the frequency at which the solution is computed over
the entire domain, as previously noted.

To assess the loss of accuracy incurred by taking a larger Dt compared to Dtm, we compute the solution using a third
implementation, which uses Nm ¼ 1, i.e., no fractional time-stepping, but a small time step of Dt ¼ h=10. We then compare
the resulting solution with the solution obtained using the fraction-stepping method above. That relative difference, com-
puted on grid points and measured in the L2 norm, is obtained for t ¼ 1:0, 2.0, and 3.0; the results are shown in Table 2.
At all three times, the two solutions differ by <0.1%. Thus, for this problem, the loss in accuracy is likely out-weighed by
the reduction in computational costs.

4. Discussion

The decomposition method introduced here leads to approximations that exhibit second-order accuracy in space and
time, as suggested by the numerical examples, even though grid values of the fluid quantities are corrected near the interface
only for the Stokes part of the solution. This is a great advantage, since these corrections are much simpler to make than
those for the full problem. Nonetheless, we do not expect that the regular velocity ur is completely smooth at the interface,
and it is not obvious that no corrections are needed for this part. Formulas for jump conditions as in [19] lead to the expec-
tation that ur is at least C2, although the right hand side of the Eq. (13) is continuous but not C1. These properties imply that
the truncation error for (13) should be OðhÞ near the interface while Oðh2Þ elsewhere. Current practice with the immersed
interface method, as well as the refinement studies done here, lead to the expectation that the error in the solution is uni-
formly Oðh2Þ. For elliptic (steady state) problems, analytical results ([17,2]) explain this gain in accuracy. The analysis in [2]
shows that the Oðh2Þ accuracy follows from the facts that the OðhÞ truncation error is on a lower dimensional set and that the
solution of an elliptic problem gains regularity. The analysis in [2] applies to the method for solving the Stokes equations
introduced in [16] and used here. For a parabolic problem such as (13) and (14) there can be an analogous gain in regularity,
and therefore in accuracy, but we expect that this property depends on choosing a time discretization with decay in high
spatial modes; the BDF has this property. We have proved that such a gain is possible for the simpler problem of a linear
convection–diffusion equation with an interface in [1]. We plan to investigate the accuracy for the Navier–Stokes equations
with interfaces in future work.

We have seen that stiffness can be dealt with in this approach by the use of small partial time steps for free-space Stokes
flow with the interfacial force. If the coefficient T0 in (5) is large, or if (5) is replaced by a more general force which includes
higher derivatives, such as a bending force (e.g., [28,30]), then the stiffness is severe. In these cases implicit treatment is
needed for the dependence of the force on the interface location. Implicit versions of the immersed boundary method
[29,21,23,12] and other interface methods [16,15,13] have already been introduced. With the present decomposition an

J.T. Beale, A.T. Layton / Journal of Computational Physics 228 (2009) 3358–3367 3367
implicit step should be needed only for the Stokes part of the solution, since the interfacial force is incorporated in this part.
For two-dimensional flow, with a closed curve tracked with markers, as we have done here, we expect a technique like that
of [11] (cf. [13,12]) can be used at least in some cases.

The decomposition used here applies as well to three-dimensional flow; the immersed interface method for the Stokes
part and the semi-Lagrangian method for the regular part both extend naturally to 3D. The motion of the interface would
have to be represented differently in three dimensions. The level set method can be used in 2D or 3D [19,15]. In [3], 2D peri-
odic Stokes flow with an interface was computed using Strain’s semi-Lagrangian contouring method for the interface motion
and Ewald summation for velocity integrals, an approach which extends to three dimensions.

It was assumed in this work that the fluid is the same on both sides of the interface. If instead the interface separates two
Navier–Stokes fluids with different viscosities and densities, the analogue of ur will no longer be regular, although the right
hand side of its evolution equation will be less singular than the interfacial force. It remains to be seen whether the decom-
position would reduce the difficulty of the two-fluid problem.

Acknowledgments

Ming-Chih Lai participated in early work in this direction, and it is a pleasure to thank him for his contributions. This work
was supported in part by the National Science Foundation under Grants DMS-0806482 (J.T. Beale) and DMS-0715021
(A.T. Layton).

References

[1] J.T. Beale, Smoothing properties of implicit finite difference methods for a diffusion equation in maximum norm, SIAM J. Numer. Anal. submitted for
publication.

[2] J.T. Beale, A.T. Layton, On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci. 1 (2006)
91–119.

[3] J.T. Beale, J. Strain, Locally corrected semi-Lagrangian methods for Stokes flow with moving elastic interfaces, J. Comput. Phys. 227 (2008) 3896–3920.
[4] G. Biros, L. Ying, D. Zorin, An embedded boundary integral solver for the unsteady incompressible Navier–Stokes equations, SIAM J. Sci. Comput,

submitted for publication.
[5] R. Cortez, M. Minion, The blob projection method for immersed boundary problems, J. Comput. Phys. 161 (2000) 428–453.
[6] D. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Springer, 1999.
[7] M. Falcone, R. Ferretti, Convergence analysis for a class of high-order semi-Lagrangian advection schemes, SIAM J. Numer. Anal. 35 (1998) 909–940.
[8] R. Glowinski, Finite element methods for incompressible viscous flow, Handbook of Numerical Analysis, vol. IX, North-Holland, 2003.
[9] B. Griffith, R. Hornung, D. McQueen, C. Peskin, An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys.

223 (2007) 10–49.
[10] B. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J.

Comput. Phys. 208 (2005) 75–105.
[11] T.Y. Hou, J.S. Lowengrub, M.J. Shelley, Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys. 114 (1994) 312–338.
[12] T.Y. Hou, Z. Shi, Removing the stiffness of elastic force from the immersed boundary method for the 2d stokes equations, J. Comput. Phys. 227 (2008)

9138–9169.
[13] M. Kropinski, An efficient numerical method for studying interfacial motion in two-dimensional creeping flows, J. Comput. Phys. 171 (2001) 479–508.
[14] D. Le, B. Khoo, J. Peraire, An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries, J. Comput. Phys. 220

(2006) 109–138.
[15] L. Lee, R.J. LeVeque, An immersed interface method for the incompressible Navier–Stokes equations, SIAM J. Sci. Comput. 25 (2003) 832–856.
[16] R.J. LeVeque, Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput. 18 (3) (1997) 709–735.
[17] Z. Li, K. Ito, Maximum principle preserving schemes for interface problems, SIAM J. Sci. Comput. 23 (2001) 339–361.
[18] Z. Li, K. Ito, The Immersed Interface Method: Numerical Solutions of PDEs Involving Interface and Irregular Domains, SIAM, Philadelphia, PA, 2006.
[19] Z. Li, M.-C. Lai, The immersed interface method for the Navier–Stokes equations with singular forces, J. Comput. Phys. 171 (2001) 822–842.
[20] A. Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984) 285–299.
[21] A. Mayo, C.S. Peskin, An implicit numerical method for fluid dynamics problems with immersed elastic boundaries, in: A.Y. Cheer, C.P. von Dam (Eds.),

Fluid Dynamics in Biology, AMS, Providence, RI, 1993, pp. 261–278.
[22] Y. Mori, C.S. Peskin, Implicit second-order immersed boundary methods with boundary mass, Comput. Methods Appl. Mech. Eng. 197 (2008) 2049–

2067.
[23] E.P. Newren, A.L. Fogelson, R.D. Guy, R.M. Kirby, Unconditionally stable discretizations of the immersed boundary equations, J. Comput. Phys. 222

(2007) 702–719.
[24] C.S. Peskin, The immersed boundary method, Acta Numer. (2002) 1–39.
[25] C.S. Peskin, B.F. Printz, Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys. 105 (1993) 33–

46.
[26] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge, 1992.
[27] Z. Tan, D.V. Le, Z. Li, K.M. Lim, B.C. Khoo, An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity

across a moving elastic membrane, J. Comput. Phys. 227 (2008) 9955–9983.
[28] A.-K. Tornberg, M. Shelley, Simulating the dynamics and interactions of flexible fibers in Stokes flows, J. Comput. Phys. 196 (2005) 8–40.
[29] C. Tu, C.S. Peskin, Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods, SIAM J. Sci.

Statist. Comput. 13 (1992) 1361–1376.
[30] S.K. Veerapaneni, D. Geuyffier, D. Zorin, G. Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a

viscous fluid in 2d, J. Comput. Phys. 228 (2009) 2334–2353.
[31] D. Xiu, G. Karniadakis, A semi-Lagrangian high-order method for Navier–Stokes equations, J. Comput. Phys. 172 (2001) 658–684.
[32] S. Xu, Z.J. Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys. 216 (2006) 454–493.

	A velocity decomposition approach for moving interfaces in viscous fluids
	Introduction
	Numerical method
	Computing the stokes solution
	Computing the regular solution
	Computing boundary motion
	The algorithm

	Numerical results
	Example 1
	Example 2

	Discussion
	Acknowledgments
	References

